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Selective neuronal PTEN deletion: can we take the 
brakes off of growth without losing control?

Introduction 
Regeneration of injured or unhealthy axons holds great therapeu-
tic promise for neurological disorders including acute trauma to 
the brain or spinal cord, stroke, and neurodegenerative diseases. 
The phosphatase and tensin homolog (PTEN) gene has emerged 
as an important regulator of axon regeneration, and recent find-
ings by multiple groups support the potential of using PTEN 
as a therapeutic target. Our recent paper reports that long-term 
deletion of PTEN, a tumor suppressor gene, does not result in any 
major detectable pathology and may also enhance neuronal vital-
ity (Gutilla et al., 2016). By selectively deleting PTEN in the motor 
cortex of young mice, we specifically assessed the effects of PTEN 
loss using the same approach that has been used to promote re-
generation of the corticospinal tract after spinal cord injury. 

PTEN’s impact on axon regeneration was discovered in a 
seminal experiment in which conditional genetic deletion of 
PTEN promoted robust axonal regeneration of retinal ganglion 
cells (RGCs) following optic nerve crush (Park et al., 2008). 
The rationale for this experimental approach is rooted in the 
discovery of inhibitory intrinsic and extrinsic factors that pre-
vent regeneration of injured axons (Schwab and Bartholdi, 
1996; Fitch and Silver, 2008). One approach to overcoming the 
intrinsic inhibitory factors focuses on attempting to “recapitu-
late development”, in order to return adult neurons to a more 

growth permissive state (Filbin, 2006). Growth cessation after 
the completion of development is thought to occur in part due 
to the onset of growth inhibiting genes being expressed. 

In their landmark study, Park et al. (2008) tested whether 
axon regeneration could be enhanced if genes that normally 
repress cell growth were eliminated prior to axon injury. They 
specifically examined several known tumor suppressor genes 
including PTEN, p53, retinoblastoma, Smad4, Dicer, and LKB. 
The effect of each individual gene was studied using multiple 
strains of “floxed” mice, with each strain having only one of the 
aforementioned genes flanked by lox-P sites. The specific gene 
was deleted in the retina be injecting AAV-Cre into the vitreous 
humor of the eye prior to performing an optic nerve crush. 
Only deletion of the PTEN gene enabled axotomized RGCs to 
regenerate, though deletion of both PTEN and p53 reduced 
retrograde degeneration of RGCs that otherwise occurred. The 
latter finding, not emphasized at the time, could mean that de-
leting PTEN enhanced RGC vitality such that the neurons could 
survive traumatic injuries that would normally cause cell death.

PTEN Deletion and Corticospinal Tract (CST) 
Axon Regeneration
Following the initial finding that linked PTEN deletion to 
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enhanced neural regeneration, a follow up study tested whether 
neuronal PTEN deletion could also enhance regeneration after 
spinal cord injury. This study focused on regeneration of the 
CST, which mediates voluntary motor function. Damage to CST 
axons due to spinal cord injury is the cause of paralysis, and en-
abling regeneration of the CST is the best hope for restoring mo-
tor function after injury. Similar to Park et al. (2008), this study 
used floxed PTEN mice, and PTEN was deleted in the motor 
cortex of mice one day after birth by injecting AAV-Cre into the 
sensorimotor cortex. Then, as young adults, mice received spinal 
cord injuries. Tract tracing of CST axons revealed robust and un-
precedented regeneration beyond the injury site (Liu et al., 2010). 

Subsequent studies have confirmed and extended findings 
from these two papers. Genetic deletion of PTEN soon after spi-
nal cord injury in adult mice, or knockdown of PTEN expres-
sion using short hairpin RNA (shRNA) against PTEN in adult 
rats a few days before injury was found to enhance the regen-
erative growth of the adult CST and recovery of skilled motor 
functions (Zukor et al., 2013; Lewandowski and Steward, 2014; 
Danilov and Steward, 2015). Remarkably, PTEN deletion also 
induced robust CST regeneration in the chronic injury setting 
one year following injury (Du et al., 2015). These discoveries 
further highlight the potential of using PTEN interference as a 
pro-regenerative strategy for treating adult spinal cord injury 
(Ramon-Cueto et al., 2000).  

PTEN’s Role in Regulating Normal Neuronal 
Development and Function
The PTEN gene is thought to exert its growth inhibiting effects 
through the PTEN protein’s negative regulation of phosphoinos-
itide 3-kinase (PI3K). As a phosphatase, PTEN converts active 
phosphatidylinositol (3,4,5)-triphosphate (PIP3) to inactive 
phosphatidylinositol (4,5)-bisphosphate (PIP2), resulting in di-
minished AKT and downstream mammalian target of rapamycin 
(mTOR) activation. Thus, deletion of PTEN leads to enhanced 
levels of PIP3, activation of AKT, and activation of mTOR. The 
mTOR pathway is well known for its ability to regulate cell 
growth and proliferation and PTEN’s upstream and non-redun-
dant negative regulation of the mTOR pathway make it a prom-
ising pro-regenerative therapeutic target (Don et al., 2012).

It’s here that we come to the theme of our review; is it possi-
ble to take the brakes off of such a powerful growth-promoting 
pathway without losing control? The logic behind testing PTEN 
was that it had been identified as a tumor suppressor gene. PTEN 
mutations are common in several cancers, and have been associ-
ated with developmental disorders including macrocephaly and 
autism spectrum disorders (Goffin et al., 2001; Hollander et al., 
2011). Experimental studies in which PTEN was deleted during 
early development in particular cell types revealed neuronal over-
growth, brain enlargement, seizures, and premature death. These 
studies used mice with a lox-P flanked PTEN gene paired with Cre 
recombinase expression regulated under the control of promoters 
including neuron specific enolase (NSE, (Kwon et al., 2006)), glial 
fibrillary acid protein (GFAP, (Backman et al., 2001; Kwon et al., 
2001; Fraser et al., 2004; Yue et al., 2005; Fraser et al., 2008; Wen et 
al., 2013)), Ca2+/calmodulin-dependent protein kinase II (CamKII, 
(Sperow et al., 2012)), and the dopamine active transporter (DAT, 
(Diaz-Ruiz et al., 2009)). In studies using NSE, GFAP, and CamKII 
promoter driven Cre expression, mice with PTEN deletion exhibit 
significantly higher postnatal mortality and premature death (~11 
weeks of age for CamKII-Cre, (Sperow et al., 2012)). In the GFAP-
Cre models, multiple groups have identified neurons with suc-
cessful PTEN deletion in the cerebellum, hippocampus, and the 

cerebral cortex (Backman et al., 2001; Kwon et al., 2001; Fraser et 
al., 2004, 2008). 

The negative consequences following widespread neuronal 
PTEN loss during development necessitated an in-depth exam-
ination of the long-term consequences of deleting PTEN in the 
way that promotes axon regeneration. As a first step in assessing 
the potential risk, we employed the same experimental model as 
in our original report of CST regeneration following spinal cord 
injury (Liu et al., 2010). PTEN was deleted by injecting AAV-Cre 
into the sensorimotor cortex of floxed PTEN mice on postnatal 
day 1. Mice were then allowed to survive for at least one year, and 
motor function was tested in the final months prior to euthana-
sia (Gutilla et al., 2016). 

Over several months of handling and testing, mice did not 
exhibit any obvious behavioral abnormalities or spontaneous 
seizures. General motor function was tested by open field activ-
ity and Rotorod, and brains were examined extensively for any 
evidence of tumors or other neuropathology. Mice with PTEN 
deletion exhibited normal exploratory activity in an open field 
and were slightly, though not significantly, impaired on the Ro-
torod. Most important, we found no evidence of tumors or oth-
er neuropathology in the area of PTEN deletion. Cortical moto-
neurons, the cells of origin of CST axons, appeared healthy and 
exhibited high levels of immunostaining for the phosphorylated 
form of ribosomal protein S6 (rpS6). rpS6 phosphorylation is 
considered a bioindiciator of mTOR activation, so high levels of 
immunostaining for phosphorylated rpS6 indicates continued 
activation of mTOR more than a year after PTEN deletion. 

The only histological abnormalities were: 1) cortical motoneu-
rons lacking PTEN (identified by retrograde labeling following 
Fluorogold injections into the spinal cord) were substantially 
larger than control neurons; 2) there was visible disruption of the 
normal laminar organization of the cortex in the area of PTEN 
deletion, perhaps as a result of the increase in neuronal size; 3) the 
ratio of neuropil to cell bodies was higher in the region of PTEN 
deletion. Our speculation is that this is due to cellular hypertrophy 
including hypertrophy of dendrites, but we have not yet assessed 
this quantitatively.

Safety of PTEN Interference as a Therapeutic 
Strategy and Remaining Questions
While our study does not qualify as a safety study as would 
be required for preclinical development of a therapy, the mice 
survived without any ill effects for up to 18 months after PTEN 
deletion (considered early old age in mice). Other studies involv-
ing hundreds of mice and rats with PTEN deletion in the senso-
rimotor cortex report enhanced regeneration and improvements 
in motor function after spinal cord injury, and there have been 
no reports of negative effects. Taken together, our findings along 
with previous reports point to the possibility of targeting PTEN 
therapeutically without triggering untoward effects.

Despite providing an important first look at the long-term 
consequences of PTEN deletion, several questions remain unad-
dressed. Other groups have reported seizures following deletion 
of PTEN early in development (Backman et al., 2001; Ogawa et 
al., 2007; Pun et al., 2012) as well as changes in the electrophysi-
ological properties of neurons lacking PTEN (Fraser et al., 2008; 
Sperow et al., 2012; Williams et al., 2015). So far there have been 
no systematic studies of the physiological consequences of PTEN 
deletion in cortical neurons, but this warrants further investi-
gation. Additionally, since most acute neurological traumas and 
neurodegenerative diseases occur in adults, it will also be import-
ant to assess the consequences of PTEN deletion in adults. 
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The ability to induce a robust growth capability in central ner-
vous system neurons has broad implications even beyond the po-
tential of enabling regeneration of axons after spinal cord injury. 
Park’s original study reported that in addition to promoting axon 
regeneration, PTEN deletion in retinal ganglion cells reduced ret-
rograde cell death following optic nerve crush. It will be of con-
siderable interest to assess whether PTEN deletion could prevent 
or reverse age-related deterioration of neurons such as neuronal 
atrophy or even prevent death that is observed in neurodegener-
ative diseases including Parkinson’s disease, Alzheimer’s disease, 
and amyotrophic lateral sclerosis (ALS). Indeed, there have been 
reports that show that deleting PTEN in the substantia nigra re-
verses symptoms in an experimental Parkinson’s disease model 
and protects dopaminergic neurons from toxic insults (Diaz-Ruiz 
et al., 2009; Domanskyi et al., 2011). 

The pace of research on PTEN related to neural regener-
ation is clearly accelerating. A PubMed search done on May 
21, 2016 using the keywords “PTEN, regeneration, and axon” 
in “Abstract” yielded a total of 56 papers, with an increasing 
number being published each year (Figure 1). Indeed, 12 
papers have been published in the first five months of 2016. 
This increased effort aimed at understanding PTEN’s role 
in neural regeneration will undoubtedly help to address the 
questions that still remain. 
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