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Previous studies indicate that conditional genetic deletion of phosphatase and tensin homolog (PTEN) in neona-
talmice enhances the ability of axons to regenerate following spinal cord injury (SCI) in adults. Here, we assessed
whether deleting PTEN in adult neurons post-SCI is also effective, and whether enhanced regenerative growth is
accompanied by enhanced recovery of voluntarymotor function. PTENloxP/loxPmice receivedmoderate contusion
injuries at cervical level 5 (C5). One group received unilateral injections of adeno-associated virus expressing CRE
(AAV-CRE) into the sensorimotor cortex; controls received a vector expressing green fluorescent protein (AAV-
GFP) or injuries only (no vector injections). Forelimb function was tested for 14 weeks post-SCI using a grip
strength meter (GSM) and a hanging task. The corticospinal tract (CST) was traced by injecting mini-ruby BDA
into the sensorimotor cortex. Forelimb gripping ability was severely impaired immediately post-SCI but recov-
ered slowly over time. The extent of recovery was significantly greater in PTEN-deleted mice in comparison to
either the AAV-GFP group or the injury only group. BDA tract tracing revealed significantly higher numbers of
BDA-labeled axons in caudal segments in the PTEN-deleted group compared to control groups. In addition, in
the PTEN-deleted group, there were exuberant collaterals extending from the main tract rostral to the lesion
and into and around the scar tissue at the injury site. These results indicate that PTENdeletion in adultmice short-
ly post-SCI can enhance regenerative growth of CST axons and forelimb motor function recovery.

© 2015 Published by Elsevier Inc.
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Axon regeneration in the mature mammalian brain and spinal cord
is extremely limited after injury. Consequently, spinal cord injury causes
persistent paralysis due to disconnection of descending axons from
their normal targets. Presumably, recovery would be improved if axon
regeneration could be achieved and if regenerating axons re-
established functional synapses below the injury level.

The extent of axon regeneration depends on the intrinsic capacity of
mature neurons to re-grow axons (Goldberg, 2004; Sun and He, 2010)
and extrinsic inhibitors in myelin and the glial scar (Tang et al., 2003;
Selzer, 2003;Wanner et al., 2008; Cafferty et al., 2010). Intrinsic growth
capabilities of neurons are regulated by gene transcription, which in
turn controls the neuron's protein synthesis critical for axon regenera-
tion. Intrinsic factors that have been shown to affect axon growth are
the components of signaling pathways and include axon growth en-
hancers such as cyclic adenosine monophosphate (cAMP) (Cai et al.,
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2001; Rodger et al., 2005), mammalian target of rapamycin (mTOR)
(Verma et al., 2005) and repressors such as phosphatase and tensin
homolog (PTEN), Kruppel-like transcription factors (KLFs) (Dang et al.,
2000; Moore et al., 2011) and suppressor of cytokine signaling 3
(SOCS3) (Smith et al., 2009; Hellstrom et al., 2011).

Of the intrinsic repressors, PTEN has emerged as a promising target
for manipulations to enable axon regeneration after injury. PTEN is a
negative regulator of the PI3K/AKT–mTOR pathway, which plays an
important role in controlling cell growth (Sabatini, 2006; Ma and
Blenis, 2009). PTEN converts PtIns(3)P to PtIns(2)P reversing the
reaction catalyzed by phosphoinositide 3-kinase (PI3K). Inactivation of
PTEN results in the accumulation of PtIns(3)P, activating AKT and
mTOR, which is a central regulator of cap-dependent protein synthesis
and cell growth.

Using an optic nerve crush model, Park et al. (2008) demonstrated
that conditional genetic deletion of PTEN in the retina promoted the
survival of axotomized retinal ganglion cells and enabled robust
regeneration of injured optic nerve axons. Subsequent studies revealed
that conditional deletion of PTEN in the sensorimotor cortex of develop-
ing mice (at day 1 postnatal) enabled adult corticospinal tract (CST)
axons to regenerate following spinal cord injuries at the thoracic level
(Liu et al., 2010). An unresolved question, however, was whether this
letion of PTEN after a spinal cord injury enhances regenerative growth
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regeneration was sufficient to support recovery of motor function and
whether regeneration could be achieved by deleting PTEN in mature
neurons after an injury.

Accordingly, here we assess whether deletion of PTEN after a spinal
cord injury in adult mice enables CST regeneration and enhances
recovery of motor function. We use an injury model and functional
assessments that are thought to measure functions related to the CST,
specifically a moderate contusion injury at C5 and assessments of
voluntary forelimb motor function (Aguilar and Steward, 2010). The
C5 contusion model is of high relevance for human SCI, because about
half of the spinal cord injuries in people are at the cervical level, and
recovery of upper extremity function is a high priority for individuals
with such injuries (Anderson et al., 2009).

Materials and methods

Experimental animals

Experimental animals were adult female mice (PTENloxP/loxP strain
C;129S4-Ptentm1Hwu/J) (http://jaxmice.jax.org/strain/004597.html) that
were between 5 and 7 weeks of age (20–25 g) at the beginning of the
experiment. Female mice were used because their bladders are easier
to manually express following SCI, leading to fewer complications due
to urinary tract infections. All procedures involving animals were
approved by the Institutional Animal Care and Use Committee
(IACUC) of the University of California, Irvine.

Thirty eight mice received spinal cord injuries on two consecutive
days (13 mice on the first day and 25 mice on the second day). Mice
from each cage were assigned to 3 groups by a technician who was
not involved in either surgeries or AAV-CRE/GFP injections. Groups
were: 1) injury only, 2) vector control (AAV-GFP) and 3) PTEN-
deleted (AAV-CRE) groups. Assignment to groups was not explicitly
random; assignment to groups was made at the time the mice were
removed from the cage maintaining approximately equal numbers
between groups. The individuals performing the spinal cord injury
surgery were blind to group assignment. At the end of the surgery,
mice were assigned a code by the technician so that testing could be
done blind.

A total of 3 out of 13mice operated on thefirst day of surgery died or
were euthanized. Two of those were a result of anesthesia complica-
tions during SCI surgery and one was euthanized due to excessive
weight loss. A total of 4 out of 25 mice operated on the second day of
surgery died or were euthanized, 3 of which were a result of anesthesia
complications during SCI surgery and one was euthanized due to
excessive weight loss. Behavior data were included in the analyses for
mice that survived until the tracer injection surgeries (see below).
Thus, after attrition due to all causes, total animal numbers at the end
of all experiments were: injury only group n = 10, vector control
group n = 10 and PTEN-deleted group n = 11 (Table 1).

Spinal cord surgical procedures

The spinal cord injury model was previously described by (Aguilar
and Steward, 2010). Mice were anesthetized by intraperitoneal injec-
tion of ketamine and xylazine (100 mg/kg and 10 mg/kg,
respectively). When supplemental anesthesia was required, one-
fourth of the original dose was given. Hair overlying the cervical
vertebrae was removed by shaving, the skin was incised and the
187
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194

Table 1
Final number of mice per group in each experiment.

Group Injury only AAV-GFP AAV-CRE Total

Exp #1 3 3 4 10
Exp #2 7 7 7 21
Total 10 10 11 31
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connective and muscle tissue was dissected to expose the vertebral
column from C4 to C6. A dorsal laminectomy was performed on C5.
The spinal column was clamped at C4 and C6 using forceps attached
to the Infinite Horizon (IH) device platform. The impacting tip (1 mm
diameter) was positioned at the middle of the dorsal spinal cord at C5
to generate the bilateral contusion. Impact force was 80 kilodynes
(kdyn) to produce a moderate contusion. After creating the lesion, the
muscle was sutured with 5–0 chromic gut and the skin was closed
with 7-mmwound clips.

AAV-CRE injections

About 20 min following the contusion injury, mice were
transferred to a stereotaxic device, the scalp was shaved and drill
holes were placed over the sensorimotor cortex. Mice received
unilateral intra-cortical injections of either AAV-CRE to delete PTEN
or the control vector AAV-GFP 6.8 × 1010 genome copies. Injections
were made at 4 sites (0.4 μl/site) in the right sensorimotor cortex
at 1.0 mm lateral, 0.5 mm deep to the cortical surface and +0.5,
−0.2, −0.5, and −1 mm with respect to the bregma. The total
time required to complete the intra-cortical injections was approxi-
mately 20 min. Following completion of the injections, the scalp was
closed with 4–0 silk suture.

Post-operative care

Following the surgeries, the mice were immediately placed on a
water-circulating jacketed heating pad at 37 °C. After recovering from
the anesthetic, mice were housed 4–5 per cage on Alpha-Dri bedding.
For 5–7 days post-injury, mice received lactate Ringer solution (1 ml/
20 g, sub-cutaneously) for hydration, Buprenorphine (0.01 mg/kg) for
analgesia, and Baytril (2.5 mg/kg, sub-cutaneously) for prophylactic
treatment against urinary tract infections. Animals were monitored
twice daily for general health, coat quality (indicative of normal grooming
activity) and mobility within the cage. Injured mice typically resume
these activities within a few days following injury. Bladders were
manually expressed twice/day for the first week and body weight was
measured once per week for the remainder of the experiment. Diet
supplements (fruit loop cereal) and regular food pellets were placed on
the floor of the cage to provide easy access. Nutri-cal (1ml, Henry Schein,
Melville, NY) was administered orally for the first week post-injury.

Behavioral testing

A 3week handling and pre-training procedure was used prior to SCI,
in order to calm the mice and enhance reliability when testing, during
which the animals were trained and baselines were collected for all
tasks. Behavioral testing was conducted for 14 weeks post-injury as
described below for the individual tasks. Testing was done blind with
respect to treatment groups except that scalp scarring made it possible
to identify mice that received intra-cortical injections but not which
vector was injected.

Grip strength meter (GSM) task

Reliable assessment of gripping ability requires that animals are
accustomed to being held. Therefore, the first week was limited to
handling each animal for 5 min each day. In week 2, mice were
trained on the grip strength meter (GSM) task using a device
designed by TSE-Systems and distributed by SciPro, Inc. For testing,
mice are held by the tail next to the bar so that they reach out to
grip the bar. To test the grip strength of one paw, the opposite
forepaw was gently taped with non-stick surgery tape (Micropore™
surgical tape from 3M, catalog nr. 1530-0) so that it could not be used
for gripping. The dimension of the working piece of tape was
approximately 0.5 × 0.75 in. to prevent the tape from hindering
letion of PTEN after a spinal cord injury enhances regenerative growth
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the pull by the opposite forepaw. In the two-paw version, mice are
allowed to grip with both paws simultaneously. Once grip was
established, mice are gently pulled away until they released their
grip.

The grip strength of each paw was tested three times per week
(10 trials per session). The mice were held facing the bar so that they
did not reach at an angle during the trials. Bar height was set as
3.5 mm so that as mice were gently pulled away, they remain
suspended just above the surface, but did not drop extensively when
they released the bar.

Each testing session assessed each forepaw separately or both paws
together until 4 successful grips were recorded for a maximum of
15 trials per session. A positive grip was scored when the digits
extended and then flexed upon contacting the bar followed by the digits
being extended as themouse released the bar and landedon the platform.
A score of zero was given when a clenched/closed forepaw engaged the
bar or if the forepaw landed on the platform in a clenched/closed position.
When gripping by both forepaws was assessed, a score of zero was given
if grip was only established by only one forepaw.

In each session, if the mouse did not grip within the first 10 trials
then themousewas given 0 for the four data points/session/forepaw(s).
If themouse gripped successfully during the first 10 trials, then the test-
ing continued until 4 successful trialswere executed or themaximumof
15 trials was reached. Mice were tested 3 times prior to injury and 2
times per week for 14 weeks post-injury.

Hanging task

To assess the ability of the forepaws to grasp and maintain grip, we
assessed the ability of mice to hang from a suspendedmetal rod as previ-
ously described (Diener and Bregman, 1998)with fewmodifications. Fol-
lowing handling as described above mice were trained for 2 days before
collecting the baselines. For testing, the GSM base was placed vertically
against a wall. The grip strength bar was raised to its maximal height so
the mice could not lean against the base. For testing, hindpaws were
taped to prevent them from being used for climbing atop of the metal
bar. We recorded how long the mice were able to hang before falling
onto a pad about 10 in. below. Three trials were collected per session
per mouse. If the mouse tried to use any parts of the body to hold onto
the bar, the mouse's tail was gently pulled so that the mouse only used
its forepaws to grasp the bar. Testing was performed two times prior to
injury and every two weeks for 14 weeks post-injury.

Mini-ruby BDA tracing of CST projections

In order to trace the corticospinal tract, tracer injections were made
into the right sensorimotor cortex at 15 weeks post-injury using the
same coordinates as for AAV-CRE and AAV-GFP injections. For this pur-
pose, mice were anesthetized using 2.5% isoflurane and positioned in a
stereotaxic device, the fur was removed by shaving, the scalp was incised
and the skull overlying the sensorimotor cortex was carefully removed
with a dental drill. Mini-ruby BDA (dextran, tetramethylrhodamine, and
biotin:molecularweight 10,000; 10% in dH2O (Molecular Probes, Eugene,
OR))was injected into a total of 4 sites (0.4 μl/site over a 3–5min time pe-
riod) using a 10 μl Hamilton microsyringe tipped with a pulled glass mi-
cropipette. After the injections were completed, the skin overlying the
skull was sutured with 4–0 silk, and mice were placed on soft bedding
on awater-jacketedwarmingpad at 37 °C for 4 h after surgery. Behavioral
tests were not performed during the time between BDA injections and
perfusion.

Tissue preparation

At the end of the study, mice were killed humanly with an overdose
of Euthasol (0.1 ml/30 g) and perfused transcardially with 4% parafor-
maldehyde (PFA) in 0.1 M sodium phosphate buffer (Na2HPO4),
Please cite this article as: Danilov, C.A., Steward, O., Conditional genetic de
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pH = 7.4. Spinal cords and brains were dissected and post-fixed in 4%
PFA overnight, then immersed in 27% sucrose for cryoprotection
overnight, frozen in TissueTek OCT (VWR International) and stored at
−80 °C until they were sectioned with a cryostat.

Three tissue blocks were prepared from the spinal cords: 1) a tissue
block extending from ~4 mm above to 4 mm below the lesion and
containing the injury site; 2) the portion of the spinal cord rostral to
the tissue block containing the lesion; and 3) the portion of the spinal
cord caudal to the tissue block containing the lesion, extending to the
caudal most segment. The main block containing the lesion was
sectioned at 20 μm in the horizontal plane, and the rostral end of the
spinal cord above the injury block and the caudal end below the injury
were sectioned transversely. The brains were sectioned at 20 μm in the
coronal plane and sections were collected in TBS.

Immunostaining to assess PTEN deletion

To address the PTEN deletion following AAV-CRE injection,
free-floating coronal sections through the brain were incubated in 1%
hydrogen peroxide for 15min. After blocking in Tyramide Signal Ampli-
fication (TSA) blocking buffer (0.5 g blocking reagent/40 ml TBS,
PerkinElmer, FP1012) sections were incubated in primary antibody at
RT overnight (rabbit anti-PTEN, Cell Signaling 9188S, 1:250). Sections
were washed in TBS and incubated with secondary antibody (donkey
anti-rabbit HRP, Jackson Immunolabs 711-065-152, 1:250) in TSA
blocking buffer for 2 h at RT. Following a wash in TBS, sections were
stained with 3-3′ diaminobenzidine (DAB, Vector Labs SK-4100) for
5 min, rinsed in TBS, mounted on gelatin subbed slides in weak
mounting solution (0.5% gelatin and 0.05% chromiumpotassium sulfate,
Sigma Aldrich, St. Louis, MO), air-dried and cover-slipped with DPX
mounting medium.

BDA and GFAP immunostaining

The block of the spinal cord containing the lesion was frozen in OCT
and sectioned in the horizontal plane at 20 μm thickness, collecting
every section, and maintaining serial order during histological
processing. All the sections from the block containing the lesion site
were co-stained for BDA and glial fibrillary acidic protein (GFAP). BDA
staining was used to confirm interruption of CST axons due to the
contusion injury and to analyze spared and regenerating axons. GFAP
immunostaining was used for lesion identification.

Free-floating sections were collected in PBS. After blocking in 5% nor-
mal goat serum in PBS, sections were incubated in primary antibody at
4 °C overnight (rabbit anti-GFAP Dako ZO334, 1:1000) in PBS with 5%
normal goat serum. The following day, sections were washed in PBS
and incubated with the fluorescent secondary antibody (goat anti-rabbit
Alexa Fluor 488,Molecular Probes A-11034, 1:250) in PBSwith 5%normal
goat serum for 2 h at room temperature. Following GFAP immunohisto-
chemistry, the sections were processed for BDA amplification signal
using the TSA (PerkinElmer, NEL704A001KT) kit. After 15 min wash in
PBS and 0.1% TritonX-100 (PBST), sectionswere incubated in horseradish
peroxidase (HRP) conjugated streptavidin (PerkinElmer, NEL750001EA,
1:200) in PBST for 2 h at room temperature. The sections were washed
three times in PBS and incubated in Cyanine 3 Tyramide reagent
(PerkinElmer, FP 1046, 1:100) in amplification diluent (PerkinElmer,
FP1052) for 15 min at room temperature. After being rinsed twice in
PBS, sections were mounted on gelatin-subbed slides, air-dried and
cover-slipped with Vectashield® mounting medium.

Cross sections from the blocks rostral and caudal to the injury were
washed twice in 1× PBS and 0.1% Triton X-100 and incubated overnight
at 4 °C with avidin and biotinylated horseradish peroxidase (Vectastain
ABC Kit, Vector Labs, Burlingame, CA). The next day, sections were
washed twice in PBS, and then reacted with diaminobenzidine tetrahy-
drochloride with nickel (DAB-N, Vector Labs, SK-4100) for 25 min at
room temperature, rinsed in PBS andmounted onto gelatin coated slides,
letion of PTEN after a spinal cord injury enhances regenerative growth
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air-dried, dehydrated and coverslipped with DPX mounting media
(Sigma Aldrich, St. Louis, MO).

Assessment of regenerative growth of corticospinal tract (CST) axons

Total BDA-labeled axon counts
Cross-sections from the rostral-most block were used to deter-

mine the extent of CST labeling above the lesion and the number of
BDA-labeled axon arbors that enter the gray matter of the cervical
spinal cord above the lesion. Images were captured on an Olympus
AX-80 microscope (Olympus Provis) using MagnaFire SP 21B
software (Optronics Software, Goleta, CA). The density of BDA
labeled axons in the dorsal CST was very high, making it difficult to
count all axons. Therefore, to estimate axon numbers in dCST, images
were taken at 120× initial magnification (a 60× objective magnified
2× under oil immersion). The axons were counted using the cell
counter analyzer in ImageJ software. For the quantitative assess-
ments the sample group was disclosed at the end of measurements.

Quantification of regenerative growth

To determine the number of BDA-labeled axons that extended
into and caudal to the lesion, 20 μm horizontal sections through the
block containing the injury were examined. Images were captured
at 10×, andmontages were created and exported to ImageJ software.
Perpendicular lines to the dorsal surface were set in themiddle of the
lesion (0 mm) and at 0.2 mm intervals through the entire spinal cord
caudal to the lesion (as illustrated in Fig. 1A). BDA-labeled axons
crossing these lines were quantified in three regions through the spi-
nal cord: dorsal column, lateral column and graymatter caudal to the
lesion. The axon counts were summed for each mouse and averaged
for each group. Data are represented as an index for each category
following the formulas: dorsal column (Dc) index = number of
BDA labeled axons in the dorsal column / total number of BDA la-
beled axons; lateral column (Lc) index = number of BDA labeled
axons in the lateral column / total number of BDA labeled axons;
arbor index (AI) = total number of axon arbors in graymatter caudal
to the lesion / total number of BDA labeled axons.

Statistical analysis

Data were analyzed using Prism software by one-way ANOVA or
two-way repeated measures ANOVA with Bonferroni correction for
multiple comparisons. Results were plotted as means plus or minus
SEM.

Results

Preoperative performance in the GSM and hanging test

Prior to injury, the average force applied before the mice released
the bar of the grip strength meter (GSM) was approximately 45 g for
both right and left paws (Table 2). Average values for the GSM
U

Fig. 1. Experimental design. The timeline indicates periods

Please cite this article as: Danilov, C.A., Steward, O., Conditional genetic de
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remained fairly consistent over testing days once the mice became
accustomed to the testing procedure. These values are lower than
the average values in a previous study using similar procedures in
which the force applied before the mice released the bar was
approximately 60–70 g (Aguilar et al., 2011). This may be due to
the different genetic background of the mice because the PTENff
mice are of mixed genetic background but mainly FVB whereas the
mice used by Aguilar et al. were C57Bl/6. To test this possibility, the
same testing procedures were used to test a group of mice from our
breeding colony that are of C57Bl/6 genetic background. The values
obtained were about 60 g (58.6 ± 1.47 SEM left paw and 56.5 ±
1.78 SEM right paw) suggesting that variation in values between
our experiment and the previous publication reflects differences
between strains.

In the hanging task, mice retained their grip on the bar for an
average of about 60 s before falling; the average hanging time was
similar between the groups on the last pre-operative testing day
during which baseline data were collected (Table 3). Preoperative
hanging time values were recorded once following two sessions of
training, so only one preoperative value is available.
E
D
 P

RContusion Injuries

Fig. 2 illustrates the method of tissue preparation and examples of
lesion sites in horizontal sections of the spinal cord imaged for GFAP.
Most lesions were filled in with a fibrous tissue matrix (23 out of 31)
but small cystic cavities were found along with the fibrous matrix in 8
mice (Figs. 2B–C). In 5 mice, the lesions were obviously asymmetric,
and in one mouse, the lesion was incomplete; data from these mice
were excluded from the behavioral analyses and analysis of CST axon
distribution. Table 4 summarizes lesion characteristics for each mouse
in this study.
General health following moderate contusion injuries

For the first few days following the moderate bilateral cervical
contusion and AAV-CRE or -GFP injections, mice were significantly
impaired and required attention and care. One day after the injury,
mice exhibited limited spontaneous locomotion but they were able
to right themselves and raised their heads to eat and drink. Within
2 days mice began moving their body with weight bearing by the
hindlimbs but movement was slow and there was a minimal use of
the forelimbs. Recovery progressed so within 5 days, mice were
able to move around their cage although forepaw use was limited.

To provide a quantitative measure of general health, mice were
weighed just prior to injury and throughout the post-injury survival
period. During the first two weeks post-injury mice lost about 2–3%
of their pre-injury body weight except in two cases. Mouse #2 from
the PTEN-deleted group lost 16% body weight but recovered by
3 weeks post-injury; mouse #25 from the injury only group lost
17% by week 2 and 29% by week 3 and was euthanized.
during which different procedures were carried out.

letion of PTEN after a spinal cord injury enhances regenerative growth
i.org/10.1016/j.expneurol.2015.02.012
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t2:1 Table 2
t2:2 Pre-injury gripping force (g) values for both left and right forepaws expressed as a mean ± SEM, n = 8–9 per group.

t2:3 Groups Gripping force (left paw) Gripping force (right paw)

t2:4 Days pre-injury Days pre-injury

t2:5 −10 −6 −5 −10 −6 −5

t2:6 Injury only 49.06 ± 1.8 47.91 ± 2.38 48.22 ± 1.4 44.34 ± 2 47.13 ± 2.7 44.6 ± 1.9
t2:7 AAV-CRE 48.4 ± 1.86 40.97 ± 1.8 42.78 ± 2.8 39.06 ± 2.3 40.44 ± 2.8 42.58 ± 2.6
t2:8 AAV-GFP 43.75 ± 2.5 44 ± 3.82 49.06 ± 4 38.38 ± 2.8 38.91 ± 3.3 42.22 ± 3.6
t2:9 Repeated measures ANOVA F = 1.22

p = 0.3136
F = 1.7
p = 0.2057
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Assessment of forelimb motor function

Grip strength meter
In considering the results from themice in which PTENwas deleted,

it is important to note that AAV-CRE was injected unilaterally into the
right motor cortex. This was done in order to be able to compare recov-
ery of the paw normally controlled by the PTEN-deleted cortex (the left
paw) vs. the contralateral side. Accordingly, data are presented sepa-
rately for each paw in Figs. 3A & B.

Griping ability in left and right paws as measured by the GSM was
severely impaired at 7 and 14 days post-injury in all 3 groups (Figs. 3A
& B). In both control groups, grip strength remained low in both paws
until about 56 days, when the left paw began to show some recovery
of strength (Fig. 3A). At 35 days post-injury the average grip strength
of the left paw was 6.97 ± 4.65 SEM in the injury only group while in
the vector control group the mice did not grip (0 ± 0 SEM). By
56 days post-injury, average grip strength was 10.14 ± 10.14 SEM in
the injury only group and 4.38 ± 4.38 SEM in the AAV-GFP group.
There was some additional increase in the average grip strength of the
left paw for the 2 control groups from 77 to 98 days post injury
(Fig. 3A). In contrast, the grip strength of the right paw remained low
for both control groups throughout the post-operative testing period
(average of 10 or less, see Fig. 3B). Differences in gripping ability be-
tween left and right paws in the control groups indicate asymmetry in
functional loss, which may reflect asymmetry in lesions.

The pattern of the recovery of gripping ability wasmuch different in
mice that received AAV-CRE. In particular, the left paw of AAV-CRE
treated mice recovered grip strength earlier and reached a higher level
at late post-lesion intervals than either the right paw or either paw of
the control groups (Fig. 3A). By 21 days post-injury, the average grip
strength of the PTEN-deleted group was 17.41 ± 7.58 SEM whereas
the mice in both control groups did not grip (0 ± 0 SEM in both). At
35 days, average grip strength in PTEN-deleted mice was almost half
of the preoperative value (25.68 ± 7.38 SEM) and at 56 days the grip-
ping force was 35.68 ± 11.41 SEM. By 84 days, values for the PTEN de-
leted group were actually higher than the preoperative baseline
(53.85 ± 11.42 SEM) and became significantly different than those
from the right paw (p b 0.05) and this persisted until the end of testing
(52.06 ± 13.36 SEM). While the increase in gripping recovery with the
left paw in the PTEN-deleted group was substantially higher through
our testing time when compared with control groups, differences
488

489

490

491

492

493

494

495

496

t3:1 Table 3
t3:2 Pre-injury hanging time values (s) in all three groups expressed as a
t3:3 mean ± SEM, n = 8–9 per group.

t3:4 Groups Hanging time (s)

t3:5 Injury only 62.78 ± 9.48
t3:6 AAV-CRE 56.58 ± 6.98
t3:7 AAV-GFP 55.04 ± 7.94
t3:8 One way ANOVA p = 0.787
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were not significantly different from the control vector until 98 days
post-injury (repeated measures ANOVA: F = 2.87; p b 0.05, Fig. 3A).

To better illustrate the differences in recovery patterns between
paws, Fig. 4 directly compares data for left vs. right paws in the 3 groups.
In the AAV-CRE group, the gripping force of the left pawwas consistent-
ly higher than the right paw from 21 days post-injury. Post hoc compar-
isons with Bonferroni correction revealed that differences were
statistically significant at 77 and 84 days (repeated measures ANOVA:
F = 5.61, p b 0.05, see Fig. 3D). Although the gripping force for the left
paw in the two control groupswas also slightly higher across the testing
period suggesting some asymmetry in lesions, these differences were
not statistically significant in either the injury only or vector control
group (repeated measures ANOVA: F = 1.91; p = 0.18) or AAV-GFP
group (F = 1.32; p = 0.27, Figs. 3E & F).

Since gripping forcewith both paws simultaneously is a reflection of
both left and right paws' gripping ability we next assessed the grip
strength with both paws for all three groups. As observed with individ-
ual forepaws, the gripping force with both paws was impaired until
77 days, in both vector control (0 ± 0 SEM) and injury only (4.45 ± 0
SEM) groups (Fig. 3C). There was slight recovery at about 84 days
post-injury as observed in left and right paws in both controls. In the
PTEN deleted group, there was some recovery of gripping with both
paws simultaneously at 35 days (10.51 ± 10.51 SEM); gripping force
remained fairly constant up to 77 days (13.19± 13.19 SEM), increasing
slightly thereafter until the final testing day when griping force was
28±15.72 SEM(repeatedmeasures ANOVA: F=1.15 and p=0.3354).

Hanging ability
Mice were not tested for their ability to hang from the bar until

14 days post injury, at which time, hanging ability was impaired to
the same extent in all groups (Fig. 4). Mice failed to grasp with both
paws leading to falls. Average hanging time increased slightly at
28 days post-injury in the injury only group, but then remained stable
at longer post-injury intervals. In the AAV-GFP group, average hanging
time remained low until about 56 days post-injury when it increased
slightly and then remained stable for the remainder of post-injury test-
ing. In contrast, hanging time increased progressively over time in the
PTEN-deleted group and was statistically different from control vector
at 42 and 84 days (p b 0.05). On the final testing day, hanging times
for control groups were 26.28 ± 7.7 SEM (AAV-GFP) and 28.33 ± 9.37
SEM (injury only), vs. 66.5±13.79 SEM for the PTEN-deleted group. Re-
peatedmeasures ANOVA revealed an overall difference between groups
(F = 3.79; p = 0.0386); post-hoc assessments with Bonferroni correc-
tion revealed that on thefinal day of testing, the PTENdeleted groupdif-
fered significantly from both control groups (p b 0.01 and p b 0.05
respectively).

Documentation of PTEN deletion by immunostaining

In sections through the sensorimotor cortex that were immuno-
stained for PTEN, the area of PTEN deletion was evident as a blank
area in which there was no immunostaining (Figs. 5A–C). The area of
letion of PTEN after a spinal cord injury enhances regenerative growth
i.org/10.1016/j.expneurol.2015.02.012
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Fig. 2. Representative examples of lesions at the lesion epicenter after an 80 kdyn cervical contusion. A) Tissue block preparation for brains and spinal cords. B–D) Images of GFAP immu-
nostained spinal cords with a fibrous filled lesion (B) and mixed fibrous/cystic cavities (C–D). ftm: fibrous tissue matrix; cc: cystic cavity; asterisk represents the lesion site; scale bar:
200 μm.

t4:1 Table 4
t4:2 Comprehensive description of spinal cord injury conditions and lesion types.

t4:3 Animal # Experimental group Force (kdyn) Type of lesion

t4:4 Exp 1 #2 AAV-CRE 82 Fibrous/asymmetric
t4:5 Exp 1 #3 Injury only 85 Fibrous/cystic cavity
t4:6 Exp 1 #4 AAV-CRE 84 Fibrous
t4:7 Exp 1 #6 Injury only 84 Fibrous
t4:8 Exp 1 #7 AAV-CRE 86 Fibrous
t4:9 Exp 1 #9 AAV-GFP 80 Fibrous
t4:10 Exp 1 #12 AAV-GFP 80 Fibrous
t4:11 Exp 1 #14 AAV-CRE 89 Fibrous
t4:12 Exp 1 #29 Injury only 81 Fibrous/cystic cavity/incomplete
t4:13 Exp 1 #5 AAV-GFP 84 Fibrous/asymmetric
t4:14 Exp 2 #17 (2B33) AAV-CRE 80 Fibrous
t4:15 Exp 2 #10 (377B) Injury only 84 Fibrous
t4:16 Exp 2 #11 (5448) AAV-GFP 85 Fibrous
t4:17 Exp 2 #22 (4909) AAV-CRE 82 Fibrous
t4:18 Exp 2 #16 (2A6E) AAV-GFP 80 Fibrous
t4:19 Exp 2 #15 (6240) Injury only 84 Fibrous/cystic cavity/asymmetric
t4:20 Exp 2 #28 (0E08) AAV-CRE 85 Fibrous
t4:21 Exp 2 #23 (613B) AAV-GFP 81 Fibrous/cystic cavity
t4:22 Exp 2 #19 (6041) Injury only 86 Fibrous/cystic cavity
t4:23 Exp 2 #32 (5750) AAV-CRE 81 Fibrous/asymmetric
t4:24 Exp 2 #30 (360F) AAV-GFP 81 Fibrous/asymmetric
t4:25 Exp 2 #21 (1243) Injury only 81 Fibrous
t4:26 Exp 2 #34 (734A) AAV-CRE 85 Fibrous/cystic cavity
t4:27 Exp 2 #33 (7A2B) AAV-GFP 83 Fibrous
t4:28 Exp 2 #31 (2054) Injury only 87 Fibrous
t4:29 Exp 2 #37 (7147) AAV-CRE 82 Fibrous/cystic cavity
t4:30 Exp 2 #35 (4509) AAV-GFP 83 Fibrous
t4:31 Exp 2 #36 (2D7F) Injury only 80 Fibrous
t4:32 Exp 2 #38 (440E) AAV-CRE 84 Fibrous/cystic cavity
t4:33 Exp 2 #24 (2A48) Injury only 88 Fibrous
t4:34 Exp 2 #27 (6962) AAV-GFP 84 Fibrous
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Fig. 3. Forepaw gripping function as measured by the GSM after C5 contusion injury. A) Comparison of average gripping force by the right forepaw in each group before injury (negative
numbers) and at different times post-injury. B) Comparison of average gripping force by the right forepaw in each group. C) Comparison of average gripping forcewhen both forepaws are
tested together. Note enhanced gripping force of the right forepaw in the PTEN deleted group, and similarity of gripping force in the different groupswhenmeasuring the left forepaw. The
gripping force values represent the average of 2 trials per week. Panels D, E and F illustrate a direct comparison between left and right forepaws in the different groups. D) PTEN-deleted
group: grip strength of the left paw recovered earlier and to a greater extent than the grip strength of the right paw. E) Injury only group: grip strengthwas comparable in both paws until
about 60 days post-injury. There were no statistically significant differences between the values for the two paws by repeated measures ANOVA (F and p values are shown on the graph).
F) AAV-GFP group: grip strength was comparable in both paws until about 70 days post-injury. There were no statistically significant differences between the values for the two paws by
repeated measures ANOVA (F and p values are shown on the graph). Results are presented as a mean ± SEM, n = 8–9 per group. Data were analyzed using repeated measures ANOVA
followed by Bonferroni posttests: *p b 0.05, statistically significantly different from AAV-GFP group (A) and when compared with right paw (D).
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U
NPTEN deletion ranged from 100 μm (anterior/posterior) to 1200 μm

(dorsal/ventral). Table 5 documents the area of PTEN for each animal
in this study.

Assessment of regenerative growth of CST axons

Our goal was to trace CST projections from cortical motoneurons in
which PTEN had been deleted. Accordingly, we assessed whether BDA
injections targeted the area of PTEN deletion (Figs. 5E–G) or targeted
parts of the cortex in which PTEN expression was maintained. For this
purpose, series of sections were immunostained for PTEN and nearby
sections were imaged for mini-ruby BDA fluorescence. Figs. 5I–K illus-
trates examples in which mini-ruby BDA fluorescence overlapped
with an area of PTEN deletion. BDA-labeled neurons were evident in
most cases, whereas in one case (Fig. 5E) the BDA labeling was diffuse.
Please cite this article as: Danilov, C.A., Steward, O., Conditional genetic de
of CST axons and motor function recov..., Exp. Neurol. (2015), http://dx.do
Table 6 summarizes the degree of overlap between the mini-ruby BDA
injection sites and area of PTEN deletion in the different cases. In all an-
imals therewas good overlap between the BDA injection site and area of
PTEN deletion at the two anterior injection sites 0.5 mm and−0.2 mm
anterior/posterior (A/P) with respect to bregma. However in two cases
the cortex was damaged during the surgical procedures so the overlap
could not be assessed. Fig. 5D illustrates a case with a small lesion sur-
rounding the needle track with no overlap between BDA and PTEN
deletion (Fig. 5L). At the posterior 2 injection sites −0.5 mm and
−1 mm A/P, the mini-ruby BDA injection clearly targeted part of the
cortex in which PTEN expression was maintained. In two mice, the ex-
tent of overlap could not be assessed because of damage to the section.
In the cases in which the BDA injection did not overlap the area of PTEN
deletion, some of the BDA labeled CST axons in the spinal cord would
originate from cortical motoneurons with preserved PTEN expression.
letion of PTEN after a spinal cord injury enhances regenerative growth
i.org/10.1016/j.expneurol.2015.02.012
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Fig. 4. PTEN deletion 20min post-injury enhances grasping ability of PTENloxP/loxPmice. The graph represents the hanging time (s) before and 98 days post injury in all three groups. Note
that the hanging time that reflects the grasping ability remains steady through the study in control groups while in the PTEN deleted group the hanging time increases progressively over
time. The results are presented asmean±SEM,n=8–9 per group. Datawere analyzedusing repeatedmeasures ANOVAwith Bonferroni as post-hoc test.Q1 Values of *p b 0.05 and **p b 0.01
were considered statistically significantly different when compared with control groups.
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Distribution of BDA-labeled CST axons in the spinal cord
The overall extent of BDA labeling of CST axons in the spinal cord

was first assessed in cross sections taken rostral to the lesion. In 18
mice, there were large numbers of BDA-labeled axons in the ventral
part of the dorsal column (the main component of descending CST
axons) on the side contralateral to the injection. Figs. 6A–C illustrates
different cases with heavy labeling. In these and other cases, the labeled
axons in theDCSTwere too numerous to count accurately. In 5mice, the
overall extent of labeling was sparse (an example of a case with sparse
labeling is illustrated in Fig. 6D); these mice were not included in the
analyses of CST axon distribution.

BDA labeled CST axons were also found in the dorsal part of the lat-
eral column (dorsolateral CST) (Table 7) and a small number of labeled
axons were also seen in the dorsal column ipsilateral to the injection. In
one mouse from the vector control group an unusually large number of
U
N
C
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R
R

Fig. 5. PTEN deletion andmini-ruby BDA labeling in brain coronal sections in PTEN-deletedmou
into the right sensorimotor. Note brownPTEN labeledneurons surrounding the area of PTENdel
the mini-ruby-BDA overlapped with an area of PTEN deletion. Note intense BDA labeling in PTE
track with no overlap between BDA and PTEN deletion. The arrows indicate the PTEN deleted
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of CST axons and motor function recov..., Exp. Neurol. (2015), http://dx.do
E
D
 P

R

axons were found in the ventral part of the dorsal column ipsilateral to
the injection (the “wrong” side, see Fig. 6A), while in 8 out of 23 mice
the average number of BDA-labeled CST axons in the dCST ipsilateral
to the cortex of origin ranged between 12 and 43 (Fig. 6C). In the rest
of mice (14 out of 23) the number of BDA-labeled axons in the dCST ip-
silateral to the injection ranged between 0 and 8 (Fig. 6B). There were
no BDA labeled axons tracking along the ventral column ipsilateral to
the injection in the position of the ventral CST in the control groups, al-
though some collaterals extended down into the ventral column from
the gray matter on the side contralateral to the injection as previously
reported (Steward et al., 2008). In two mice in the PTEN deleted
group, however, a few BDA labeled axons were seen tracking along
the ventral column (Table 7).

Next, we examined cross sections from the caudal block (Figs. 6E–H)
for the presence of BDA-labeled axons in the dorsal column, which
se. Panels A–C illustrate patterns of PTENdeletion in differentmice after AAV-CRE injection
etion. Panels E–H illustratemini-rubyBDA labeling in the same section. Panels I–K illustrate
N deleted neurons. Panels D–L indicate a case with a small lesion surrounding the needle
neurons. Scale bar: 250 μm.

letion of PTEN after a spinal cord injury enhances regenerative growth
i.org/10.1016/j.expneurol.2015.02.012
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t5:1 Table 5
t5:2 Comprehensive description of PTEN-deleted area in sensorimotor cortex.

t5:3 Animal # PTEN-deleted area (μm)

t5:4 Anterior–posterior Dorsal–ventral

t5:5 #4 200–300 800
t5:6 #7 100–200 600
t5:7 #14 200 1200
t5:8 #2B33 200 600
t5:9 #734A 100–200 1000
t5:10 #4909 100 600
t5:11 #7147 200 800
t5:12 #440E 100–200 800
t5:13 #0E08 100–300 1100
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t6:6
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would indicate incomplete destruction of the dorsal CST. In 15 of 23
mice, therewere no labeled axons in the dCST indicating that the contu-
sion injury destroyed the main component of CST axons in the dCST
(Fig. 6G), while in 8 out of 23 mice, there were very few labeled axons
between 1 and 5 (Figs. 6E–F). Fig. 6H shows an example of poor BDA la-
beling. No BDA labeled axonswere found tracking along the ventral col-
umn in the expected position of the ventral CST (Figs. 6E–H).

Next we evaluated the collections of serial horizontal sections
through the lesion block. Fig. 7 shows serial horizontal sections from in-
jury only (Figs. 7A–C) and vector control (Figs. 7D–F) groups. In all
cases, the main component of BDA-labeled axons in the dorsal CST
was largely destroyed. BDA labeled axons in the dorsal column termi-
nated in retraction balls rostral to the injury, typical for injured axons
in control groups. BDA labeled axons could be seen extending past the
lesion in the dorsal part of the lateral column (the dlCST) and in some
cases BDA-labeled axon arbors could be seen extending from the
dlCST into the gray matter in caudal segments in control groups
(Fig. 8). Thus, the BDA labeled axon arbors in caudal segments in the
control groups likely originate from the dlCST.

The AAV-driven expression of GFP can be used for orthograde trac-
ing of axons. To determine whether GFP labeling could be used to
trace CST axons in mice that received AAV-GFP, sections rostral to the
injury were immunostained for GFP. Only a few GFP-positive axons
were detected in the location of the dCST, and no GFP-labeled axon ar-
bors were detectable. The lack of GFP-labeling is likely due to the fact
that AAV-driven expression decreases over time and would likely be
minimal at the long survival times here (data not shown).

In contrast, CST axon distribution was qualitatively different in the
PTEN-deleted group (Figs. 7G–I). Abundant collaterals extended from
the main tract rostral to the lesion, and some extended across the mid-
line and into or around the scar tissue at the injury site. BDA-labeled
axons were also present in the ventral gray matter caudal to the lesion
in PTEN-deletedmice. BDA labeled axonswere also observed extending
bilaterally caudal to the lesion while others had an abnormal trajectory
U
N 634
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Table 6
PTEN/BDA co-localization at different injection sites: 0.5 mm,−1 mm,−0.5 mm and−1
mm anterior/posterior (A/P) with respect to bregma.

Animal # Injection site #1 Injection site #2 Injection site #3 Injection site #4

#4 Yes Yes Yes Yes
#7 Yes Yes Cortex

damaged
No

#14 Yes Yes Yes Yes
#2B33 Yes Yes Yes No
#734A Yes Yes Yes Yes
#4909 Yes Yes No No
#7147 Yes Yes Yes Yes
#440E Cortex

damaged
Yes Cortex

damaged
No

#0E08 Yes Yes Yes Yes
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with axons located outside their normal topography suggesting regen-
erative growth (Fig. 9A). In one mouse with the mixed matrix/cavity,
BDA labeled axons extended into the scar, forming a bridge between
two parts of the lesion (Fig. 9B).

Quantitative assessments of CST axons

For the quantitative analysis, we quantified the axons extending into
and caudal to the lesion site in the serial horizontal sections. CST axons
were assessed at 0.2 mm intervals through the entire spinal cord caudal
to the lesion side in three different regions as follows: dorsal column,
lateral column and gray matter (Fig. 10A). To control for differences in
the overall extent of BDA labeling, we counted the total number of
BDA-labeled axons in cross sections from the rostral part above the
lesion.

As previously reported (Aguilar et al., 2011) the C5 contusion injury
destroyed almost all CST axons in the dorsal column in all three groups
as revealed by counts of BDA labeled axons in the dorsal column at dif-
ferent distances from the injury site (Fig. 9). The counts are expressed as
the dorsal column (Dc) index in which the number of axons in the dor-
sal column caudal to the injury is divided by the total number of BDA-
labeled axons rostral to the injury. The Dc index was very small
among groups: about 0.001 at 1 mm, and 0.004 at either 2 or 3 mm dis-
tance from the injury side (F = 1.02, p = 0.3884).

As shown in previous studies (Aguilar et al., 2011) the C5 contusion
injury model usually spares the dlCST, and our results confirmed this.
Counts of BDA-labeled axons in the dorso-lateral column are expressed
as the Lc index (number of axons in the lateral column caudal to the in-
jury divided by the total number of BDA-labeled axons rostral to the in-
jury). The Lc index was on average 0.02 at the lesion site and 0.02 at
1mm, 0.024 at 2mmand 0.017 at 3mmbeyond the lesion site (repeat-
ed measures ANOVA: F = 0.24, p = 0.7889) (Fig. 10C).

To quantify axon arbors in the gray matter caudal to the injury,
counts were expressed as the arbor index (AI), in which arbor counts
were divided by the total number of BDA-labeled axons rostral to the in-
jury. The AIwas 0.29 at themiddle site of the lesion (0mm) in the PTEN
deleted group compared with 0.014 or 0.029 in the injury only or con-
trol vector group, respectively (p b 0.001). In PTEN deleted mice, the
number of BDA labeled axons was significantly different from controls
at every distance up to 1.4 mm caudal to the lesion (F = 8.46, p =
0.0051) and still higher than controls at 2 mm as shown in Fig. 10D.
Therewas no statistically significant difference in the AI between exper-
imental groups at 3 mm and 4 mm distance from the lesion (repeated
measures ANOVA: p N 0.05).

Discussion

Our goals in this study were to determine whether conditional ge-
netic deletion of PTEN in mature cortical motoneurons can enable re-
generative growth of CST axons after SCI, and whether enhanced
regeneration would improve forelimb gripping and grasping function
in a clinically-relevant model (C5 contusion). Our results reveal that
mice that received AAV-CRE injections to delete PTEN 20 min after a
moderate contusion at C5 exhibited enhanced gripping and grasping
performance in tasks in which the CST is thought to be critical and en-
hanced the regenerative growth of the CST in comparison to control
groups. This supports the conclusion that it is possible to enhance re-
generative growth by deleting PTEN in adult neurons and in a time
frame that is more therapeutically relevant than previous approaches
in which PTEN was deleted at P1, long before the time of a spinal cord
injury. In what follows, we discuss these findings in the context of pre-
vious studies and consider caveats.

The effect of PTEN gene deletion in enhancing axon regeneration has
been described before in different models. In an optic nerve crush
model, Park et al. (2008) showed that conditional genetic deletion of
PTEN in adult retinal ganglion cells (RGCs) is sufficient to initiate the
letion of PTEN after a spinal cord injury enhances regenerative growth
i.org/10.1016/j.expneurol.2015.02.012
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Fig. 6. Examples of BDA labeling in cross sections of spinal cord rostral (A–D) and caudal (E–H) to the lesion. Panels A–D illustrate different cases of BDA-labeling in cross sections taken
rostral to injury and the representative caudal parts are presented in panels E-H. Different patterns of the BDA labeling in the ventral part of the dCST ipsilateral to the injection site:
(A) heavy labeling, (B) 7 axons and (C) 43 axons. Panel (D) shows an example of poor labeling of the dCST. Panels E–G illustrate BDA-labeled axons in the dlCST and gray matter in
the caudal cross sections. The lack of axons in the dorsal column indicates the complete destruction of the main tract of dCST. No BDA-labeled axons were found in the ventral column.
Panel H shows the caudal cross sections from a case with a poor labeling (dc = dorsal column and vc = ventral column); scale bar: 100 μm.
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regenerative program for axon growth. Next, Liu et al. (2010) demon-
strated that conditional genetic deletion of PTEN in the sensorimotor
cortex at P1 enhanced CST regeneration following two types of spinal
cord injuries in adult mice: a dorsal hemisection and a complete crush
at thoracic level 8 (T8). Recently Zukor et al. (2013) showed that dele-
tion of PTEN in neonatal mice (P0/P1) using shRNA against PTEN
(AAV-shPTEN-GFP) also enabled regenerative growth of CST axons
Please cite this article as: Danilov, C.A., Steward, O., Conditional genetic de
of CST axons and motor function recov..., Exp. Neurol. (2015), http://dx.do
following spinal cord injury at T8 in adults. Also, Ohtake et al. (2014)
demonstrated that PTEN inactivation using systemic PTEN antagonist
peptide (PAP) treatment after a dorsal hemi-transection injury at T7
led to increased density of serotonergic fibers in the caudal spinal cord
and enhanced sprouting of CST axons rostral to the lesion. These latter
studies represent another step toward establishing clinical relevance
by showing that the expression of native PTEN can be knocked down
letion of PTEN after a spinal cord injury enhances regenerative growth
i.org/10.1016/j.expneurol.2015.02.012
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t7:1 Table 7
t7:2 The number of BDA-labeled axons in rostral and caudal parts. The numbers represent the
t7:3 average of counts per 2–3 sections.

t7:4 Animal
t7:5 #

Rostral part Caudal part

t7:6 dCST dlCST Ventral
column

dCST dlCST Gray
matter

Ventral
column

t7:7 #9 1 2 0 0 14 0 0
t7:8 #2A6E 0 0 0 0 0 0 0
t7:9 #6962 1 0 0 0 0 0 0
t7:10 #4509 92 13 0 5 19 52 0
t7:11 #613B 12 8 0 0 9 6 0
t7:12 #0E08 2 12 0 1 3 14 0
t7:13 #7147 0 0 0 0 3 3 0
t7:14 #3 2 23 0 0 15 11 0
t7:15 #5448 2 11 0 2 0 0 0
t7:16 #2B33 6 8 0 0 0 2 0
t7:17 #734A 17 21 2 0 14 19 0
t7:18 #4909 12 20 1 3 11 10 0
t7:19 #2D7F 6 12 0 1 51 47 0
t7:20 #7A2B 2 4 0 0 1 10 0
t7:21 #2054 13 6 0 0 2 3 0
t7:22 #6041 17 19 0 5 43 39 0
t7:23 #377B 5 5 0 0 5 19 0
t7:24 #7 8 5 0 0 5 0 0
t7:25 #4 1 3 0 0 0 0 0
t7:26 #6 11 21 0 2 22 27 0
t7:27 #12 43 12 0 1 8 13 0
t7:28 #14 7 20 0 1 19 15 0
t7:29 #1243 21 0 0 0 2 0 0

Q3
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with shRNA or inactivated by systemic PAP treatment to enhance axon
growth potential.

The present study differs in several ways from previous studies, and
takes additional steps toward potential clinical relevance. First, although
we used a conditional genetic model for PTEN deletion as did Liu et al.,
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Fig. 7. Regeneration of CST axons after PTEN deletion in PTENf/f mice. Images of 3 serial horizo
ventral (C, G, K) to the central canal (B, F, H) in injury only (A–C), AAV-GFP (D–F) and AAV-CR
Abundant axon arbors were present in AAV-CRE group and few spared axons caudal to the lesio
observed only in PTEN-deleted group (C). Panels (a), (b) and (c) illustrate higher magnificatio
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the AAV-CRE mediated deletion was accomplished in adult mice at the
time of a spinal cord injury. Second, the injury model used in this
study was a moderate cervical contusion at C5 centered on the midline
of the spinal cord that produced bilateral tissue damage and bilateral
function deficits. We chose this injury model for its human relevance.
More than 50% of spinal cord injuries are at the cervical level, impairing
both lower and upper extremities and the most common type of injury
in humans is the contusive type. Moderate C5 contusions resulted in
profound bilateral deficits in forelimb motor function. Consistent with
our previous studies (Aguilar and Steward, 2010), there was minimal
urine retention even during the early post-injury period. None of the
mice exhibited autophagia, and only one mouse exhibited excessive
weight loss. General health was acceptable with mice being able to
function independently within 5 days post-injury.

Measures of forelimbs' gripping and grasping function

The grip strength meter (GSM) yields quantitative and reproducible
measures of the flexor strength of the digits, is simple and minimally
stressful and allows independent assessment of each forepaw. Assess-
ment of each forepaw independently was important because AAV-CRE
was injected unilaterally into the right motor cortex, allowing compar-
isons of the recovery of the paw controlled by the PTEN-deleted cortex
vs. the contralateral side, which provides an internal control. There was
greater recovery by thepaw controlled by the injected (right) side of the
cortex (the left paw). Grip strength in the left paw of the PTEN-deleted
group increased earlier and recovered to a higher level at late post-
lesion intervals. An underlying assumption is that the laterality of con-
trol still exists following PTEN deletion and injury. In this regard, one
feature of enhanced CST axon growth is bilateral extension near the in-
jury site, which could disrupt the normal laterality of function.

There was also slightly greater spontaneous recovery of the left paw
in injury only and vector control groups, although differences between
ntal sections from the spinal cords starting from the dorsal part (A, D, G) to about 80 μm
E (G–I) groups. Note: the main component of the dCST was destroyed in all three groups.
n were observed in vector control group. Note: BDA labeled axons passing the lesionwere
n view; scale bar: 500 μm for A to I panels and 200 μm for a–c.

letion of PTEN after a spinal cord injury enhances regenerative growth
i.org/10.1016/j.expneurol.2015.02.012
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Fig. 8. Examples of axon arbors extending from the dlCST into the gray matter caudal to lesion in injury only (A) and vector control (B) groups. The arrows indicate the extended axons
from the dlCST into the gray matter; scale bar: 100 μm.
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paws were not statistically significant. This could be due to a slight
asymmetry in the lesion that might influence the degree of sparing in
thedlCST. Previous studies showed that sparedCST axons could contrib-
ute to behavioral recovery following injury (Kartje-Tilllotson et al.,
1987; Thallmair et al., 1998).

Data from the hanging task also indicated enhanced forepaw grasp-
ing ability in PTEN deleted mice, and the recovery was more pro-
nounced after 10–12 weeks of testing. We employed the hanging task
because it was simple, was quantitative, and produced consistent re-
sults over time. Contusion injury impaired hanging ability in all three
groups. In control groups, hanging ability was slightly improved at the
28 day testing point, but did not improve further, whereas hanging abil-
ity continued to increase in the PTEN deleted group indicating continu-
ing recovery.
T
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Relevance of the GSM and hanging task to the CST

Our studies focus on the CST because it is themajor pathway control-
ling voluntarymotor function, especially forelimbmotor function. Stud-
ies in humans indicate that the CST mediates fine motor control of the
distal arm and hand (Schieber and Rivlis, 2007) and evidence from ex-
perimental animals supports this conclusion. Lesions of the pyramidal
tract in hamsters lead to deficits in execution of precise manipulation
of the digits (Kalil and Schneider, 1975). In rats, damage to the CST in
the brain or spinal cord impairs forelimb motor function during skilled
movements (Whishaw et al., 1998; Whishaw and Metz, 2002;
U
N
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Fig. 9. Examples of axon re-growth in 2 different PTEN-deletedmice. Panel A illustrates BDA lab
example where BDA labeled axons extended into the scar between two parts of the fibrous/cy
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OAnderson et al., 2005; Kanagal and Muir, 2008). However, lesions of
the rubrospinal system also impair forelimb function during skilled
movements (Muir et al., 2007; Whishaw et al., 1992, 1998;
Schrimsher and Reier, 1993) suggesting that other descending path-
ways could also be important in forelimb recovery.

The GSM and hanging task assess flexor and general forelimb
strength, and there is evidence that at least the GSM depends on the in-
tegrity of the sensorimotor cortex in mice (Blanco et al., 2007) and rats
(Strong et al., 2009). Nevertheless, it is an open question whether these
functions can truly be called “voluntary” in the same sense as the skilled
manipulative tasks that are tested by pellet retrieval (Whishaw et al.,
1992, 1998). In this regard, a companion paper reports the enhanced re-
covery of forelimb motor function following PTEN deletion and salmon
fibrin implantation at the injury site in a task that does involve pellet re-
trieval (Lewandowski and Steward, 2014).
Analysis of regenerative growth of CST axons

Analyses of BDA-labeled CST axons revealed that contusion injuries
almost completely destroyed the main component of the dorsal CST in
all groups. However, we found a small number of BDA-labeled axons
in the lateral column in all three groups indicating sparing of the
dlCST, which can be a source of sprouting. Histological analysis revealed
that in control groups, there were a few axon arbors in the gray matter
caudal to the lesion. Studies ofmice inwhich themain tract in the dorsal
column had been completely transected at the thoracic level revealed
eled axonswith awrong trajectory outside their normal topography. Panel B represents an
stic cavity lesion. The arrows indicate the extended axons into the scar; scale bar: 100 μm.
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Fig. 10.Quantification of CST axons. Panel A shows the axon count diagram. Panels B and C
illustrate the axon quantification in dorsal column and lateral column respectively. Note:
The number of axons in dorsal and lateral columns was not statistical different among all
groups at any given distance caudal to the lesion. Panel D represents the axon arbor
quantification in the gray matter below the lesion. The axon arbors were abundant in
PTEN-deleted group when compared with controls. The results are presented as
mean ± SEM, n = 4–6 per group. Data was analyzed using repeated measures ANOVA
with Bonferroni as post-hoc test. Values of ***p b 0.001, **p b 0.01, and *p b 0.05 were
statistically significant different from control groups.
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that some axons coming from the dlCST arborized extensively through
the dorsal and ventral horns at caudal levels often extending across
the midline to arborize on the contralateral side (Steward et al., 2004).
These extensive arbors could reflect sprouting from spared dlCST axons.

The distribution of BDA labeled axons was different in the PTEN
deleted group in two ways. First, there was a bloom of axons rostral to
the lesions, and axons extended into and around the lesion with
exuberant axon arborization ventrally in the gray matter below the
lesion. Second, quantitative assessment of BDA labeled axons showed
larger numbers of CST axons caudal to the injury in the PTEN deleted
group.

The regenerative growth seen here resembles what has been previ-
ously reported following spinal cord injury with either conditional
genetic deletion of PTEN at P0/P1 (Liu et al., 2010) or with AAV-shPTEN
injections at P1 to knockdown PTEN (Zukor et al., 2013). The extent of
the regenerative growth appears less extensive, however, although direct
comparisons are difficult because the site and nature of the injury are
different (C5 contusion vs. T8 dorsal hemisection or crush). Further
studies will be required to address this issue.

In conclusion, the present study demonstrates enhanced recovery of
forepaw gripping and grasping function and enhanced regenerative
growth of injured CST axons with conditional genetic deletion of PTEN
in adult mice shortly after a spinal cord injury. These results suggest
that manipulations of PTEN or the downstream mTOR pathway may
be a viable target for therapeutic interventions to promote axon
regeneration after spinal cord injury.
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